Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing.

نویسندگان

  • Maureen Clancy
  • L Curtis Hannah
چکیده

Certain plant and animal introns increase expression of protein-coding sequences when placed in the 5' region of the transcription unit. The mechanisms of intron-mediated enhancement have not been defined, but are generally accepted to be post- or cotranscriptional in character. One of the most effective plant introns in stimulating gene expression is the 1,028-bp first intron of the Sh1 gene that encodes maize (Zea mays) sucrose synthase. To address the mechanisms of intron-mediated enhancement, we used reporter gene fusions to identify features of the Sh1 first intron required for enhancement in cultured maize cells. A 145-bp derivative conferred approximately the same 20- to 50-fold stimulation typical for the full-length intron in this transient expression system. A 35-bp motif contained within the intron is required for maximum levels of enhancement but not for efficient transcript splicing. The important feature of this redundant 35-bp motif is T-richness rather than the specific sequence. When transcript splicing was abolished by mutations at the intron borders, enhancement was reduced to about 2-fold. The requirement of splicing for enhancement was not because of upstream translation initiation codons contained in unspliced transcripts. On the basis of our current findings, we conclude that splicing of the Sh1 intron is integral to enhancement, and we hypothesize that transcript modifications triggered by the T-rich motif and splicing may link the mRNA with the trafficking system of the cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development

Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...

متن کامل

Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing.

Either of the first two introns of the Arabidopsis tryptophan pathway gene PAT1 elevates mRNA accumulation from a PAT1:beta-glucuronidase (GUS) fusion roughly 5-fold without affecting the rate of PAT1:GUS transcription. To further explore the mechanism of this intron-mediated enhancement of gene expression, we wanted to determine whether splicing or specific intron sequences were necessary. In-...

متن کامل

بیان مینی ژنهای فاکتور 9 انعقادی انسانی در سلولهای کلیه انسان

Background & aims: Hemophilia B is caused by either functional deficiency or lack of the human coagulation factor IX (hFIX). The current protein-based therapy with plasma-derived proteins increases, the risk of blood-borne pathogens transmission. Therefore, replacement therapy with recombinant hFIX (rhFIX) is an attractive alternative to plasma derived hFIX concentrates. In order to express and...

متن کامل

Increased gene expression by the first intron of maize shrunken-1 locus in grass species.

The first intron of the shrunken-1 (Sh1) locus of maize was incorporated into constructs containing the chloramphenicol acetyltransferase gene (CAT) coupled with the nopaline synthase 3' polyadenylation signal. Transcription was driven with the 35S promoter of the cauliflower mosaic virus (CaMV) or the Sh1 promoter of maize. Transient gene expression was monitored following electroporation into...

متن کامل

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 130 2  شماره 

صفحات  -

تاریخ انتشار 2002